asdasda

  • <tr id='TrPI3q'><strong id='TrPI3q'></strong><small id='TrPI3q'></small><button id='TrPI3q'></button><li id='TrPI3q'><noscript id='TrPI3q'><big id='TrPI3q'></big><dt id='TrPI3q'></dt></noscript></li></tr><ol id='TrPI3q'><option id='TrPI3q'><table id='TrPI3q'><blockquote id='TrPI3q'><tbody id='TrPI3q'></tbody></blockquote></table></option></ol><u id='TrPI3q'></u><kbd id='TrPI3q'><kbd id='TrPI3q'></kbd></kbd>

    <code id='TrPI3q'><strong id='TrPI3q'></strong></code>

    <fieldset id='TrPI3q'></fieldset>
          <span id='TrPI3q'></span>

              <ins id='TrPI3q'></ins>
              <acronym id='TrPI3q'><em id='TrPI3q'></em><td id='TrPI3q'><div id='TrPI3q'></div></td></acronym><address id='TrPI3q'><big id='TrPI3q'><big id='TrPI3q'></big><legend id='TrPI3q'></legend></big></address>

              <i id='TrPI3q'><div id='TrPI3q'><ins id='TrPI3q'></ins></div></i>
              <i id='TrPI3q'></i>
            1. <dl id='TrPI3q'></dl>
              1. <blockquote id='TrPI3q'><q id='TrPI3q'><noscript id='TrPI3q'></noscript><dt id='TrPI3q'></dt></q></blockquote><noframes id='TrPI3q'><i id='TrPI3q'></i>
                汽车金属材料化学成分怎么检测?
                时间:2021-12-13 11:17:03   阅读

                随着汽车工业与金属材料工业的发展,普通的钢铁材料已经不能完全适应汽车发展的需要,一些新材料如高强度钢、超高强度钢、铝合金等应运而生。金属材料在使用过程中所表现的各种性能如机械性能(拉、压、冲、弯、扭)、物理性能〓和其他性能,直接决定了它在车辆上的应用范围、安全可靠性以及使用寿命。

                而金◣属材料组织结构以及元素种类分布及含量,决定了其应用范围以及在加工制造过☉程中所表现出来的性能如冲压性能、焊接性能、切削性能、热处理性能等,以及零件加工制造的难易程度。对于钢铁金属材料的物理性能影响较大化学成分有碳、硅、锰、磷、硫,俗称五大元素。碳作为金属中一个重要元素,而碳含量增加时,钢铁的强度和硬度增加,塑性和延展性※降低,反之亦然;而硫作为一种有害的元素,硫含量过高,形成硫化∞锰、硫化铁,是钢铁在热变形的产生裂纹主要原因,要严格控制。对于合金钢而言除了控制五大元素的含量外,还要对其他合金元素如硼、镍、铬、钒、钼、钛、铌等进行严卐格控制,以保证达到材料的使用要求和性能要求。


                1 汽车材料中金属材料
                1.1 汽车》用铸铁

                铸铁是含碳量为2.11%~6.69% 的铁碳合金,元素成Ψ 分以铁、碳、硅为主要成分。按照碳在铸铁中存在的形态和石墨形状,铸铁被分为白口铸铁、灰口铸铁、球墨铸铁、蠕墨铸铁、可锻铸铁、合金铸铁。铸铁具有优良铸造性能、切削加工性能以及耐磨和减振性能,铸铁的★生产工艺简单、成本低,是汽车制造及其他工业中广泛应用的一种材料,如发动机缸体、动力转向节、主轴承盖、平衡轴等等。

                1.2 汽车用钢

                钢是含碳量ζ在0.04%~2.3%之间的铁碳合金,是汽车金属材料中应用较为广泛的一种,车身的许多板件都用钢板制成。按照化学成分分为碳素钢和合金钢。碳素钢按碳含量高低又分低碳钢、中碳钢、高碳钢。优质碳素结构钢,通过控制硫、磷含量在0.04以下,强度、硬度低,塑性与韧ζ 性好,冷塑性、变形性和焊接性好,适合车身构件冲压成型。而合金钢按照合金元素高低又分为低合金、中合金、高合金钢。低合金中,高强度钢(HLSA )0.25%-0.60% ,在低碳钢中加入磷来提高钢的强度,具有低碳钢类似的加工特性,提高抗』拉强度;高抗拉强度钢(HHS),通过增加了硅、锰和碳,提高了抗○拉强度。用来制造与悬架装置有关的构件和车身。

                不锈钢主要由铁、铬及含量不同的碳元素合金组成。强度质量比高及非凡的抗腐蚀能力,决定它被广泛用于机械加工及冷成形车︽身零件。如车身、车轮、防盗组。

                按照热处理工艺,钢分为♀普通热处理和表面热处理。其中表面热处理又分为表面淬火和化学热处理。热处理是通过加热保温冷却手段,改变材料表面或内部的化学组织和结构。钢板按照轧制工艺,常见的有热轧钢板和冷轧钢板。热轧钢板车身钢材,一般 800℃以上的轧制;而冷轧钢板,是将热轧钢板酸洗后,在常温状态由轧机轧制,具有加工性▆好,表面美观,用于车身构件。表面淬火,通过淬火是提高钢材料表面的硬度、耐磨性,而芯部仍然保持良好的韧性,如车辆的齿轮、曲轴等。表面化学热处理的钢板,通过化学反应╲结合物理方式,改变表层的化学成分和结构,一般会加入①镍、锌、铝等合金元素,主要用于汽车上易发生腐蚀、易氧化、耐磨损等部位,如车门槛、车轮护罩、车身下护围等。

                1.3 汽车用有色金属及合金

                通常把铁和铁碳合金称为黑色金属,而把黑色金属以外的其他金属称为有色金属。

                随着汽车轻量化需求以及轻量化材料的推广,在汽车上广为应用的有铝及铝合金、铜及铜合金、镁及镁合金,以铝◆合金为主的有发动机、铝轮毂以及铝合金车身、车门、保险杠、车轮等等。


                2 金属材料成分测试方法

                对于金属中的元素成分测试,传统的测试方法通过制备少量的金属碎屑,将碎屑通过一定的方式溶解,再采用实验室的滴定法、比色法、容量法等测试。


                wz.wuhannb.jpg


                随着化学测试仪器设备技术的进步发展,衍生了一批快速分析测试的设备,如火花放电原子发射光谱仪、波长色散X射线荧光光谱仪、碳硫分析仪、氧氮氢分析仪等试验设备在一定程度上取代了传统化学滴定、重量法,实现了快速、准确的测试要求。但是也存在一些样品溶解方式无法被取代,如元素含量极低的情况下,如质量浓度达到10-6-10-9级别时,同样可以借助传统的溶样方式,再采用高灵敏度的仪器设备:石墨炉原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等测试。下面就汽车金属元素成分的测试方法原理及相关研究进行分别介绍。


                2.1 火花源放电原子发射光谱法

                火花源放电原子发射光谱法俗称直读光谱法,是将制备好⊙的金属样品块在火花光源的作用下,与对电极之间发生放电,在高温和惰性气氛中产生等离子体,被测元素的原子被激发时,电子在原子内不同能级间跃迁,当从高能级向低能级跃迁时产生特征谱线,通过测量该种特征谱线的波长和强度,并且特征谱←线的强度与元素的浓度呈比例关系,实现对待测元素进行定性分析和定量分析。火花放电原子发射光谱法,俗称直读光谱法。它可以同时测定包括C、Si、Mn、P、S在内的非金属和金属多种元素,测试范围为百分之几。为了提高测试的准确性,除了应用仪器设备自带的校准曲线→,通常需要建立相应基体的标准曲线进行校准和验证。该方法要求样品的规整度较高,如果为碎屑、粉末、表面不规则样品或者溶液状态则不能测试。


                我国钢铁领域的3个金属元素的测试标准:GB/T 4336-2016、GB/T 24234-2009、GB/T 11170-2008 ,分别规定了碳素钢、中低合金钢、铸铁、不锈钢等材料的C、Si、Mn、P、S等元素含量采用火花放电原子发射光谱测定方法,在各行业应用较广。


                2.2 波长色散X射线荧光光『谱法

                波长色散X-射线荧光光谱仪(WD-XRF)是一种可以对多元素进行快速同时测定的●仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即产生X-荧光),采用晶体分光而后由探测器接收经过衍射的特征X射线信号。如果分光晶体和控测器作同步运动,通过不断地改变衍射角,可获得样品内各元素所产生的特征X射线的波长及各个波长X射线的强度,并依此进行定性和定量分析。WD-XRF对元素的检测浓度线性范围宽,测试可达到0.001%-100%,一次可以测试多种元素,测试速度快,对于符合要求的样品基本无需处理。WD-XRF方法对样品的要求类似于火花ㄨ放电原子发射光谱。WD-XRF已经广泛应用于岩矿的成分测试,在钢铁领域的不锈钢、铝合金成分测试也有应用。但是WD-XRF不适合分析轻质量元素以及极低含量如0.01%以下的元♂素测试。


                2.3 原子吸收光谱法

                原子吸收光谱分析(AAS)是基于试样蒸气相中被测元素◥的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该ぷ元素含量的一种仪器分析方法。AAS测试范围在为μg/ml以上4~6个数量级,一般是单个元素测试,但不能连续同时多个元素的测试,此外对非金属元素的灵敏度偏低。依据⊙进样方式分为一般的火焰AAS和石墨炉AAS,所有AAS测试进样都需要将固体样品转换为液体样品,对大部分金属元素可直接测试,但对于部分∩元素如砷、锑元素需要氢化发生反应生成氢化物测试。


                2.4 电感耦合等离子体发射光谱法

                电感耦合等离子体发射光谱法(ICP-AES),是利用通过高频电感耦合产生等离子体放电的光源来进行原子发射光谱@ 分析的方法。它是一种火焰温度范围为6000至10000K的⊙火焰技术。该发射强度表示样品中元素的浓度。ICP-AES在钢铁、铝合金、锌合金、高温合金等冶金分析方面应用较广。同AAS一样,ICP-AES的进样也需要将固体样品转换为液体样品,它可以一次同时测试多种元素,测试范围在 μg/ml以上至100%,测试灵敏度◆高,不仅可以测试金属元素,还可以测试部分非金属元素B、P、S、Si等。ICP-AES在低合金钢、铝合金、钛合金、锌合金等测试有应用。


                我国的标准 GB∕T 20125-2006、GB/T 20975.25-2008、GB/T 5121.27-2008分别规定了︻应用 ICP-AES法对低合金钢、铝合金和铜合金中的元素含量测试方法。


                2.5 电感耦合等离子体发射质谱法

                电感藕合等离子体质谱法(ICP-MS),它是一种将电感藕合等离子体ICP技术□ 和质谱MS结合在一起的分析方法。ICP利用在电感线圈√上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP-MS中,ICP起到离子源的作用,高温的等离子▂体使大多数样品中的元素都电离出一个电子而形成了一价正离子。质谱MS是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。ICP-MS测试速度块▲,灵敏度高,检测限低,适合多元素同时测试;在样品经过适当的预处理后,既々可以测试金属元素,也可以测试非金属元素B、Si、P、S、As等,还可以结合液相色谱或气相色谱联机方式进行测试元素的价态;元素含量测试范围宽,从ng/mL-100%可达9个数量级。

                ICP-MS主要有气体进样、液体进样和固体进样多种方式,其中液体进样方式应用最为广泛。


                2.6 非金属元素CS/ONH分析法

                金属元素中的C、S与O、N、H通常采用红外吸收法和热导检测仪测试,俗称碳硫分析仪和氧▓氮氢分析仪。碳硫分析仪(CS仪)即高频感应炉燃烧后红外吸收仪,针对金属中@的非金属元素碳和硫,电负性相差不大,在金属中都能形成碳化物或硫化物,碳在钢铁中以碳化物和游离态碳存在,再高温富氧的条件下可被氧化成二氧化碳和二氧化硫。二氧化碳和↘二氧化硫具有永久电偶极矩,都有振动、转动等结构,按照量子力学的分裂能级,入射特征波长红外辐射耦合产生吸收,根据朗伯-比尔定律,吸收强度与浓度呈正比关系,测量经红外吸收后的红外光谱的强度,便可计算〓出二氧化碳或二氧化硫的含量。CS分析测试的 C、S质量含量可低至0.005%和0.0005%。


                标准 GB/T 11261-2006、GB/T 20124-2006、GB/T 223.82-2018分别采用惰性气体熔融-热导或红外吸收法规定了钢铁中的氧、氮、氢含量的测试方法,氧元素质量分数含量 0.0005~0.020%,氮元素质量分数含量 0.002~0.6%,氢元质量分数含量◢素0.20~30μg/g。